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Many quadratic stress-strain relations have been proposed in recent years to 
extend the applicability of linear eddy-viscosity models at modest computational 
cost. However, comparison shows that none achieves much greater width of appli- 
cability. This paper, therefore, proposes a cubic relation between the strain and 
vorticity tensor and the stress tensor, which does much better than a conventional 
eddy-viscosity scheme in capturing effects of streamline curvature over a range of 
flows. The flows considered range from simple shear at high strain rates and pipe 
flow, to flows involving strong streamline curvature and stagnation. 
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Introduction 

The rapid advance of computational schemes able, in principle, to 
analyse fluid flow and convective heat or mass transport over 
domains of arbitrary complexity again focuses attention on the 
method of characterizing turbulent exchange processes. The inad- 
equacies of eddy-viscosity models in even mild departures from 
simple strain, which have been known and documented for over 
20 years (Bradshaw 1973), are now brought into sharper relief as 
attention shifts to the far more complex flow fields that arise in 
the engineering environment. 

Now, stress-transport models of turbulence offer a more reli- 
able way of handling complex strain fields, but schemes of this 
type in fairly widespread use have been developed with the idea 
that any rigid surface can (as far as the turbulence is concerned) 
be regarded as infinite and plane. That constraint is inapplicable 
to the great majority of flows in the mechanical engineering 
sector that might use computational fluid dynamics (CFD) for 
their analysis. Quite apart from this serious deficiency, stress 
transport schemes are still regarded as requiring too much com- 
puter resource for industrial use, especially in three-dimensional 
(3-D) flows where all stress components are nonzero. 

An alternative, much simpler route is available for approxi- 
mating the Reynolds stresses which adopts an algebraic connec- 
tion between stress and strain - -  albeit not a linear relationship. 
Such relationships may be arrived at by simplifying stress-trans- 
port models (so-called algebraic stress models, ASMs) but, in 
view of the current limitations of such schemes alluded to above, 
it is best to regard them simply as conjectured generalizations of 
the eddy-viscosity approach, containing quadratic and, occasion- 
ally, higher-order products of the strain and vorticity tensors. The 
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earliest schemes go back to the 1970s (Pope 1975), although, in 
the last few years, there have been concerted efforts by many 
different groups world wide. 

If we retain simply quadratic terms, the basic stress-strain 
relationship may be written as follows: 

2 
uiu j - ~ q k  

aij k 
v, v t l 

-- k Sij.-~ Cl--.~(SikSkj-- -~Sk/Skl~ij) 

+ c:~(f t ikSkj  + ftjkSki) 

Ar C3~ (~'~ik~jk -- l~lk"lk~ij) (1) 

where 

S d ~ o x j + o x i ]  'Utiy axj ~xi 

and ~k is the rotation rate of the coordinate system. 
As presented, four empirical coefficients appear in Equation 

1: c~, the usual coefficient found in linear schemes and the 
coefficients of the quadratic terms, e I - c  3. Table 1 shows the 
values proposed for these coefficients in a number of recent 
studies. * All of these studies arrived at the recommended coeffi- 
cient values by considering the prediction of shear stress in a 
simple shear and one other complex flow (or some other feature 
of a simple shear - -  such as the normal stress level - -  that 
cannot be mimicked with a linear scheme). Evidently, in arriving 
at the respective optimized sets, very different values have 

* The quantities S and l~ appearing in the model of Shih et al. 
(1993) are dimensionless strain rates and vorticities and appear 
again later. 
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Table 1 Earlier const i tut ive relat ions based on Equat ion 1 

Model  c, c~ c 2 c 3 Addi t iona l  terms 

Speziale 0.09 

(1987) 
Nisizima and 0.09 
Yoshizawa 
(1987) 
Rubinstein and 0.0845 
Barton 
(1990) 
Myong  and 0.09 
Kasagi 
(1990) 
Shih, Zhu and 
Lumley  
(1993) 

- 0.15 0.00 0.00 - 0.3 vt/e ( ~iy - 

1/3 "~kk 5ij) 
--0.76 0.18 1.04 

0.68 0.14 - 0.56 

0.28 0.24 0.05 Wij 

2/3 0.75/c# 3.8/c~ 4.8/c~ 

1.25 + S +  0.9,Q 1000 + S 3 1000 q- S 3 1000 -{- S 3 

• ~Sij OSij OU, OU~ 

(n and m denote wall-normal and streamwise direction) 

emerged for the coefficients c I - c 3 depending on what flow or 
flow feature was chosen to predict. This seems to indicate that, at 
quadratic level, only slightly greater generality is achievable than 
with the usual linear eddy-viscosity model. In particular, the 
various effects of streamline curvature on the turbulent stresses 
cannot be adequately accounted for at this level. 

This realization has shaped the strategy of the present contri- 
bution. A cubic stress-strain relation has been adopted here; the 
greater flexibility that this has brought enables stress levels to be 
captured over a far wider range of complex strain fields than 
hitherto. A preliminary version of this model was reported at the 
5th Symposium on Refined Flow Modelling and Turbulence 
Measurement (Craft et al. 1993). The model coefficients have, 

however, been entirely retuned since that study for the present 
archival contribution. 

Proposed model 

S t r e s s - s t r a i n  re la t i onsh ip  

In the Introduction section, we reported that the numerous pro- 
posals for quadratic stress-strain relationships showed little width 
of applicability. Here, therefore, efforts have been focused on 
providing a suitable cubic stress-strain relation. The most general 
such expression retaining terms up to cubic level that satisfies the 

Notation 

a~j Reynolds stress anisotropy tensor=u~uj/k-  
2/3~ij 

D pipe diameter 
E source term in ~ equation 
h channel width 
H height of impinging jet discharge above plate 
k Turbulent kinetic energy = 1 /2u iu  i 
Nu Nusselt number 
Pk production rate of k 
Pr Prandtl number 
r radial distance 
R1R2 inner and outer radii of curved channel 
Re Reynolds number 
R t turbulent Reynolds number 
S nondimensional strain rate = k/e~/(1/2SijS q) 

nondimensional strain rate = k/g~/(l/2SijSij) 
S.: mean strain rate tensor 
u~; v', w' rms fluctuating velocities 
uiu j Reynolds stress tensor 

u.~ wall friction velocity 
U b bulk velocity 
U~t centerline velocity 
U i, U, V, Wmean velocity components 
Urea x maximum velocity 
W0. 8 swirl velocity at r /D = 0.4 
xi Cartesian coordinates 
y distance from wall 
Yc Yap length scale correction 

Greek 

S 

e i j k  

V 

V t 

f~ 
12 i] 
Ok 

Kronecker delta 
dissipation rate of k 
"isotropic" dissipation rate, e - 2v(Okl/2/Oxj) 2 
alternating tensor 
kinematic viscosity 
turbulent viscosity 
nondimensional vorticity = k/ex/(1/21~qi)ij) 
mean vorticity tensor 
rotation vector of coordinate system 
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required symmetry and contraction properties, can be written as 
follows: 

V t 1) t 
aij = -- ~ S i j  "+ Cl ? (  SikSjk -- l /3Sk lSk l~ i j  ) 

])t 
+ c2~( f~ i ,  Sj, + a~,Si,) 

l )  t 

+ C3~- ( ~'~ikajk -- 1/3a,,a,zs,j) 
vtk 

+ C4~2 ( S k i a l j  "+ SkjOli)ak,  

vtk 
"]- C 5 ~-~ ( ~-~,,aImSmj -}- S i l a l m a m j  - 2Slmamnanl~i j  ) 

vlk vtk 
+ c 6 - ~ S i j S k l S k l  "Jr- C 7"---~-Sij~kl~kl (2) 

Besides the indicated role of the stress and vorticity tensors, 
the dimensionless strain and vorticity invariants 

k k 
~ "~ 1/~-/~ijSij h =~ ~ ¢l/2~~ij[-~ij (3) 

are introduced as parameters. The turbulent viscosity v t = 
c~fvkZ/g:, where k is the so-called isotropic dissipation (Jones 
and Launder 1972), e -  2v (Okl/2/3xj) 2, a quantity that van- 
ishes at the wall. 

Lee et al. (1990), from a comparative DNS study of the 
appearance of eddy structures in homogeneous shear flows and 
near-wall turbulence, concluded that it was really the strain 
invariant that was mainly responsible for the streaky structure 
found in the viscous "buffer"  region near a wall rather than the 
turbulent Reynolds number. Our own turbulence model explo- 
rations, as those of our colleagues (Cotton and Ismael 1993), 
confirm that conclusion; namely, that the near-wall behavior of 
turbulence, although strongly affected by viscosity, cannot be 
adequately characterized in terms of a single viscosity-based 
parameter. The strain parameter, S, provides a possible additional 
parameter. 

Optimization over a wide range of flows, described later, has 
resulted in the following expressions for c ,  and fv.: 

0.3 
Cp. 

1 + 0.35(max(S,  ~.~))1.5 

( r ]) X 1 - e x p /  , - - - -  _ 
[ e x p ( - 0 . 7 5  max(S,  ( l ) )  

f~ = 1 - e x p [ -  ( R,/90) 1/2 - ( Rt/400) 2] 

where R t =-ke/v~ and the coefficients c a . . . .  , c 7 are given in 
Table 2. 

In a simple shear flow, the choice c 6 = - c  7 results in the 
linear term being the only contribution to the shear stress (i.e., 

1,2 i i i 

08 ~ (211 

aij 
0.4- 

0.0- 

-04 

0 0 
a22 

-0.8 - -  
0 5 10 15 25 

s 
Figure 1 Variation of stress anisotropies with strain rate in 
high Reynolds number  homogeneous  shear flow (symbols: 
DNS data of Lee et al. (1990) ( S =  15-18) and experiments of 
Champagne et al. (1970), and Tavoularis and Corrsin (1981) 
( S = 3.5, 6); lines present predictions) 

a12 = - ( vJk )dU1/dx2 ) .  The functional form of c~ has thus 
been tuned so that, in a simple homogeneous shear flow at high 
Reynolds number, good agreement with experimental and direct 
numerical simulation data is obtained for the variation of uv/k 
with strain rate S, as shown in Figure 1. The nonlinear elements 
allow good predictions to be obtained also for the normal stress 
anisotropies. Note that the linear eddy-viscosity model gives 
al l  = a 2 2  = 0 ,  and a12 = - 0 . 0 9  S. The quadratic models, sum- 
marized in Table 1, also fail to predict the correct variation of aij 
with S in this simple shear flow. 

An additional Reynolds number-dependent damping term f ,  
is still required for near-wall flows, but its influence is consider- 
ably less than that used in the linear eddy-viscosity models, 
because now a substantial amount of the near-wall strain-related 
damping is provided by the functional form of %. 

Dissipation rate modeling 
The turbulence energy k and its "isotropic" dissipation rate 
are obtained from the transport equations: 

D-7 = c~1-£e~ - c~2 T +E  + Yc + ~x--~j (~ + ~ ' / ~ )  

where 

Pk = - u u . -  ; e = ~ + 2 v  ' '0xj t-~x~ J 
and the various coefficients are given in Table 3. 

(4) 

(5) 

T a b l e  2 The proposed form for the coefficients of Equation 2 

C 1 C2 C3 C4 C5 C6 C7 

2 5c2 2 0 - 5  c~ - 0.1 0.1 0.26 - 10 c~ 

T a b l e  3 Coefficients in k and ~. equations 

C81 C~ 2 O" k O'~ 

1.44 1.92 (1-0.3 e x p ( -  R2)) 1.0 1.3 
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3O 

U + 

25- 

for R t < 250 (6) 
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The Yap (1987) length-scale correction Yc, which is normally 
employed in the linear k-e model, is retained here also. It can be 
written as follows: 

(  2[,15 lr,1512) 
 =max o83 T 25 y lll T l'° (7) 

20- 

15- 

10- 

5- 

0 
0 

50 
U + 

25- 

I I I 

I I I 
1 2 3 

log(y + 

k: I 
3. 

O~0 I I I I 1 

0 0 
0 

(a) Re = 5600 

0 I I I I 
0.0 0.1 0.2 0.5 0.4 0.5 

y/h 

20- 

15- 

10- 

5- 

0 
0 

I I 

I I I 
1 2 3 

log(y + ) 

The near-wall source term E, which in the Launder-Sharma 
(1974) model, takes the form 2vvt(O2Ui/OxjOxk) 2, is here modi- 
fied to reduce its dependence on Reynolds number. Conse- 
quently, it is modeled as follows: 

k+  5 1 i ~ i i 

o 

0.0 0.1 0.2 0.5 0.4 0.5 

y/h 

(b) Re = 14000 

Figure 2 Profiles of mean velocity and turbulence energy in plane channel f low at Reynolds number of 5600 and 14,000; _ _  
present model ;  . . . . .  Launder and Sharma (1974); o DNS, Kim et al. (1987); Kim (personal communicat ion 1989) 
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Figure 3 Reynolds stresses in plane channel f low at Re = 5600; _ _  
DNS, Kim et al. (1987) 
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present model; . . . . .  Launder and Sharma (1974); symbols 

where y is the distance to the wall. The role of this term is to 
reduce the otherwise excessive levels of length scale in the 
near-wall region of separated and stagnating flows. 

Applications of the model 

The first test case considered is a plane channel flow. Figure 2 
shows predictions of mean velocity and turbulence energy with 
direct simulation data at bulk Reynolds numbers of 5600 and 
14,000. The current predictions are generally closer to the data 
than with the Launder-Sharma (1974) model, which fails to 
capture the near-wall peak in k. 

It is only the shear stress which affects the mean velocity in 
this simple shear flow, and from Figure 3 this can be seen to be 
very well predicted. Although (unlike any linear eddy-viscosity 
scheme) the present model does give a separation between the 
normal stress components, the difference is not as large as is 
found in the direct numerical simulation (DNS) data, particularly 
in the near-wall region. Although this certainly is a deficiency, it 
is not, we suggest, a terribly serious one, because in this immedi- 
ate near-wall region, it is the shear stress that governs the mean 
flow behaviour. Of course, in the limit, where we consider 
perpendicular flow impingement, the normal stresses m u s t  be 
influential. As shown later, however, in this limit, very satisfac- 
tory normal-stress profiles are obtained. 

q , 0 -  

u/ud 
0.8- 

0.6- 

0.4. 

0.2. 

0 , 0  t I I I 

0.0 0.1 0.2 0.3 0.4 0.5 

r/D 
Figure 4 Mean velocity profile in circular pipe flow at Re = 
45,000; _ _  present model; . . . . .  Launder and Sharma 
(1974); © Laufer (1954) 
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W/We.8 
16 
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04- . . . . ~ o O  ~ 

0 . 0  , , i i 

0.0 0.1 0.2 0.3 0.4 0.5 

r/D 
Figure 5 Swirl velocity profile in a pipe rotating about its own 
axis (Re = 45,000); _ _  present model; . . . . .  Launder and 
Sharma (1974); O Cheah et al. (1993) 
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Figure 6 Mean velocity profile in ful ly developed curved channel f low at Re = 70,000; _ _  
Sharma (1974); C) Ellis and Joubert (1974) 
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Re = 23,000; _ _  
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Profiles of mean velocity and shear stress at radial distances r /D=  1 and 2.5 in the impinging jet with H/D= 2 and 

present model; . . . . .  Launder and Sharma (1974); O Cooper et al. (1993) 
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Figure 8 Profiles of rms velocities perpendicular (v) and parallel (u) to the wall in the impinging jet; 
Launder and Sharma (1974); symbols, Cooper et al. (1993) 
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Figure 9 Nusselt number distributions in the impinging jet cases; _ _  
Baughn and Shimizu (1989), Baughn et al. (1992) 
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Figure 4 compares the mean velocity profile across a circular 
pipe with Laufer's (1954) experimental data. Both the present 
model and the Launder-Sharma (1974) model give predictions 
close to the data. A very marked difference does, however, arise 
in the case when the pipe rotates about its own axis (Figure 5). In 
this case, any linear eddy-viscosity scheme would predict a linear 
variation of circumferential mean velocity with radius: whereas, 
the present model returns a strongly nonlinear increase, in line 
with the experimental data (Cheah et al. 1993). 

To assess the model 's prediction of streamline curvature 
effects, Figure 6 shows predictions of the mean velocity profile in 
a fully developed curved channel flow studied experimentally by 
Ellis and Joubert (1974). The curvature leads to increased mixing 
near the concave surface and damping near the convex wall, 
resulting in a strongly asymmetric velocity profile with the shear 
stress on the inner wall being barely 40% of that on the outer. In 
this case, the present model does create an asymmetry in the 
profile of the correct sense, and returns a shear stress ratio on the 
two walls of about 60% compared with nearly 90% in the case of 
the linear eddy-viscosity model. 

The final test case is a round, turbulent jet impinging normally 
onto a heated fiat plate. The thermal field measurements are from 
Baughn and Shimizu (1989), and the corresponding velocity field 
has been documented by Cooper et al. (1993). Configurations 
have been computed with discharge heights of 2 and 6 jet 
diameters above the plate surface and at Reynolds numbers of 
23,000 and 70,000. Impinging jets offer one of the most difficult 
classes of flow to predict, because on both the symmetry axis and 
in the region of strong streamline curvature induced by the wall, 
the deformation tensor is very different from that of a simple 
shear for which most models have been calibrated. Figures 7 and 
8 show mean velocity, shear stress, and normal stress profiles, 
plotted against distance from the wall, at various radial positions 
for the case of H / D =  2, at Re = 23,000. The considerable 
improvements the present model brings to the stress field, partic- 
ularly in the impingement zone, result in the mean velocity peaks 
being more accurately captured. The same improvements in the 
dynamic field are also found at the higher Reynolds number and 
discharge height. The heat-transfer for the impinging jet case has 
been computed by prescribing a constant turbulent Prandtl num- 
ber of 0.9, the usually prescribed value for near-wall turbulence. 
Figure 9 shows the Nusselt number distributions at both Reynolds 
numbers and discharge heights. The low levels of turbulence 
energy predicted by the present model in the impingement zone 
results in much improved heat transfer levels, although at the 
higher Reynolds number, there is still a small peak at the 
stagnation point, which is not found experimentally. 

Conclusions 

This paper introduced a new nonlinear model in which strain and 
vorticity tensors to cubic level are retained. Comparisons over a 
range of complex shear flows have shown that the model per- 
forms consistently better than a linear eddy-viscosity scheme. As 
a final point, it must be emphasized that computing times re- 
quired for this type of closure are typically only 10% more than 
for a linear EVM. Thus, it seems ideally suited for inclusion in 
commercial software. 

Cubic eddy-viscosity model of  turbulence: T. J. Craft et al. 
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